Understanding Membrane Fouling at High Organic Loading Rates in the Submerged Membrane Bioreactor Treating Municipal Wastewater

R. Shane Trussell, P.E., Nam Jung Jang, Rion Merlo, Slawomir Hermanowicz, and David Jenkins
Department of Civil and Environmental Engineering
University of California, Berkeley
March 8, 2005
Outline

• Introduction
• Rationale
• Materials and Methods
• Results
• Conclusions
• Acknowledgements
Introduction

• Membrane Bioreactor (MBR)
 – Modified activated sludge process
 – UF/MF membrane

• Two configurations
 – External (EMBR)
 – Submerged (SMBR)
Flow Schemes for the SMBR and Conventional Activated Sludge Process

Conventional

- Primary Treated Wastewater (Equivalent to a 3 mm screen)
- Aeration Basin
- Secondary Clarifier
- Microfiltration
 - Reverse Osmosis Feedwater
 - Backwash Water

SMBR

- Aeration Basin
- WASTE

(SMBR stands for Submerged Membrane Bioreactor)
Process Limitation

CAS
- Decline in effluent water quality
 - High effluent COD
 - High effluent SS
- Treatment capacity remains unaffected

MBR
- No decline in effluent water quality
- Membrane fouling
 - Loss of treatment capacity
Outline

- Introduction
- **Rationale**
- Materials and Methods
- Results
- Conclusions
- Acknowledgements
Rationale

\[\frac{F}{M} = \frac{S_o}{\theta_H \cdot X_{MLVSS}} \]

- The SMBR process is currently limited to an MLSS concentration of approximately 10 g/L
- The F/M ratio is a key parameter to optimize reactor tank design
 - Small tank (low HRT)
 - Small tank (high F:M)
Effect of F/M on Steady-State Fouling Rate

\[y = 1.661x^{2.1977} \]

\[R^2 = 0.9517 \]

Proceedings of WEFTEC 2004
Outline

• Introduction
• Rationale
• Materials and Methods
• Results
• Conclusions
• Acknowledgements
Equipment and Apparatus

- Bench-scale SMBR
- Treating primary effluent from the City of San Francisco’s SEP
 - COD = 325 mg/L
 - TSS = 98 mg/L
Membrane Operation and Characteristics

- Mitsubishi Sterapore®
- Nominal pore size = 0.4 μm
- Hydrophilic
- Membrane flux = 18 L/m²·h
- Coarse bubble air = 0.4 L/s
- 9 min operating cycle followed by 30 sec relax
Experimental Methods

- Operating conditions:
 MCRT = 10 d (F/M = 0.50 gCOD/gVSS·d)
 MCRT = 2 d (F/M = 2.34 gCOD/gVSS·d)
- Dissolved oxygen > 2 mg/L
- Constant MLSS = 1.4 g/L
- Steady-state data collection began after 3 MCRTs
- 2 week steady-state data collection period
Tools Used to Understand Membrane Fouling

- Steady-state membrane fouling rate during operation
- Molecular weight distribution of influent, SMP and effluent
- FTIR of clean and fouled membranes
- Batch filtration experiments expressed as Modified Fouling Index (MFI)
 - Stir cell filtration of steady state mixed liquor with UF (NMWCO = 300 kDa, PES)
 - Data presented as MFI at 20°C and 210 kPa
- Fouled membrane resistances
Fouled Membrane Resistance Terms

- $R = R_M + R_F + R_C$
- $R = \text{Total resistance}$
- $R_M = \text{Membrane}$
- $R_C = \text{Cake Layer}$
- $R_F = \text{Foulants}$
 - Organics Adsorption
 - Inorganic Precipitation
Outline

• Introduction
• Rationale
• Materials and Methods
• Results
• Conclusions
• Acknowledgements
Membrane Performance at 10-d MCRT
(F/M=0.50 gCOD/gVSS·d)

- Flux
- Specific Flux

Start up
66 Days at 10-d MCRT
(F/M = 0.50 gCOD/gVSS·d)

Chemical Cleaning
Steady-state fouling rate
Membrane Performance at 2-d MCRT (F/M=2.34 gCOD/gVSS·d)

Flux, LMH

Specific Flux @ 20°C, LMH/bar

Days of Operation

Flux
Specific Flux

Chemical Cleaning
Chemical Cleaning
Chemical Cleaning

Steady-state
Improper Wasting Volumes

25 Days at 2-d MCRT (F/M = 2.34 gCOD/gVSS·d)
Steady-State Membrane Fouling Rates

<table>
<thead>
<tr>
<th>F/M gCOD/gVSS·d</th>
<th>MCRT d</th>
<th>Steady-state Fouling Rate @ 20°C LMH/bar·d</th>
<th>SMP$_c$ mg/L</th>
<th>SMP$_p$ mg/L</th>
<th>Total SMP mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>10</td>
<td>2.60</td>
<td>24</td>
<td>14</td>
<td>38</td>
</tr>
<tr>
<td>2.34</td>
<td>2</td>
<td>59.0</td>
<td>10</td>
<td>49</td>
<td>59</td>
</tr>
</tbody>
</table>

- Membrane fouling rates increased with F/M
- Total SMP concentration increased with F/M
Carbohydrate Molecular Weight Increased at Low MCRT (High F/M)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Carbohydrate concentration, mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influent</td>
<td>> 10 kDa</td>
</tr>
<tr>
<td>SMP - 10 d</td>
<td>10 kDa - 1 kDa</td>
</tr>
<tr>
<td>SMP - 2 d</td>
<td>< 1 kDa</td>
</tr>
<tr>
<td>Effluent - 10 d</td>
<td>> 10 kDa</td>
</tr>
<tr>
<td>Effluent - 2 d</td>
<td>10 kDa - 1 kDa</td>
</tr>
<tr>
<td></td>
<td>< 1 kDa</td>
</tr>
</tbody>
</table>
Protein Molecular Weight Increased at Low MCRT (High F/M)

Influent SMP - 10 d SMP - 2 d EFF - 10 d EFF - 2 d

Protein Concentration, mg/L

Sample

Protein Concentration, mg/L

Influent SMP - 10 d SMP - 2 d EFF - 10 d EFF - 2 d

> 10 kDa 10 kDa - 1 kDa < 1 kDa

Sample
Fouled Membrane FTIR Results

- 3380 - indicates OH stretching
- 1660 and 1540 - indicates NH and COO\(^-\) (protein)
- 1060 - indicates CO stretching of polysaccharides
Fouled Membrane Resistance Terms

Fouled membrane R distribution for SMBR:
A) 10-d MCRT (0.5 gCOD/gVSS·d)
B) 2-d MCRT (2.34 gCOD/gVSS·d)
Batch Filtration Results

<table>
<thead>
<tr>
<th>MCRT, d</th>
<th>Modified Fouling Index, 10^{-3} s/L²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mixed Liquor</td>
</tr>
<tr>
<td>2</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
</tr>
</tbody>
</table>

- MFI was higher for all fractions at MCRT = 2 d
- SS represents the suspended solids alone (no soluble component) and increased 6 times with MCRT decrease
- Mixture effect was observed at both conditions
Outline

• Introduction
• Rationale
• Materials and Methods
• Results
• Conclusions
• Acknowledgements
Conclusions

• High organic loading rates (F/M) increased membrane fouling rates
• Increased steady-state membrane fouling rates correlated with total SMP
• MW of carbohydrate and protein SMP increased with F/M
• Membrane rejected higher MW SMP
• FTIR indicated protein and carbohydrate presence on fouled membranes with stronger adsorptions resulting from the 2-d MCRT condition
Conclusions

• Membrane fouling was primarily due to the adsorption of organics and R_F was dominate resistance term of fouled membranes

• R_C increased with F/M and this was attributed to changes in floc properties that result in a “sticky” cake

• Sludge filtration resistance (MFI) increased with F/M

• MFI of suspended solids increased 6 times, supporting the increasing importance of the cake layer with increasing F/M
Conclusions

Present Worth, $

\theta_H$, time

- Capital
- O&M
Acknowledgements

• Nam Jung Jang
 Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, South Korea
• City and County of San Francisco’s Water Pollution Control Department
• Mitsubishi Corporation
• ZENON Environmental, Inc.
Understanding Membrane Fouling at High Organic Loading Rates in the Submerged Membrane Bioreactor Treating Municipal Wastewater

R. Shane Trussell, P.E., Nam Jung Jang, Rion Merlo, Slawomir Hermanowicz, and David Jenkins
Department of Civil and Environmental Engineering
University of California, Berkeley
March 8, 2005